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1. Introduction

In this paper, we conduct a study of quantum transport models for a two-dimensional
nano-size double gate (DG) MOSFET using two approaches: non-equilibrium Green’s func-
tion (NEGF) and Wigner distribution. Both methods are implemented in the framework of
the mode space methodology where the electron confinements below the gates are pre-
calculated to produce subbands along the vertical direction of the device while the trans-
port along the horizontal channel direction is described by either approach. Each approach
handles the open quantum system along the transport direction in a different manner. The
NEGF treats the open boundaries with boundary self-energy defined by a Dirichlet to Neu-
mann mapping, which ensures non-reflection at the device boundaries for electron waves
leaving the quantum device active region. On the other hand, the Wigner equation method
imposes an inflow boundary treatment for the Wigner distribution, which in contrast
ensures non-reflection at the boundaries for free electron waves entering the device active
region. In both cases the space-charge effect is accounted for by a self-consistent coupling
with a Poisson equation. Our goals are to study how the device boundaries are treated in
both transport models affects the current calculations, and to investigate the performance
of both approaches in modeling the DG-MOSFET. Numerical results show mostly consistent
quantum transport characteristics of the DG-MOSFET using both methods, though with
higher transport current for the Wigner equation method, and also provide the current-
voltage (I-V) curve dependence on various physical parameters such as the gate voltage
and the oxide thickness.

© 2010 Elsevier Inc. All rights reserved.

With fast development of semiconductor technologies, MOSFET dimensions are scaled down continuously. Gate and
channel lengths are considered as the characteristic size of a MOSFET. The classical Boltzmann equation can accurately de-
scribe the drift-diffusion transport of charge carriers when the characteristic size is much larger than the mean free path of
the carriers. However, quantum transport models should be used to address quantum effects once the characteristic size be-
comes much smaller than the mean free path [1]. The quantum transport models from the Schrodinger wave function can be
implemented with either the formulation of the Non-equilibrium Green'’s function (NEGF) [2] or that of the Wigner distri-
bution function in a phase space [3]. Many simulations have been done on quantum devices such as the RTD (Resonant Tun-
neling Diode), bulk MOSFET, SOl MOSFET, and double gate (DG)-MOSFET [1,4-7]. Especially, the DG-MOSFET with symmetric
oxide layers and gates is a promising new device for better and more effective control of short channel effects.
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A comprehensive description of quantum transport in nano-size MOSFETSs is offered by the solution of NEGF, coupled with
a Poisson equation self-consistently. However, the computational cost for solving the full NEGF is prohibitive; thus simplified
models are usually employed to reduce the computational cost [6]. For thin body DG-MOSFETs, for which the confinement
effect of the gates is strong, we could approximately decouple the solution of two- dimensional (2D) Schrédinger wave func-
tions into two 1D problems [6,7]. Such an approximation is the basis of the mode space method where the electron confine-
ments below the gates are pre-calculated to produce subbands along the vertical direction of the device while the channel
transport is described by 1D Schrodinger equations with a subband energy profile along the transport direction. In many
cases, one more approximation is done by assuming the eigenfunctions in the confinement direction do not change along
the transport direction. Thus, those 1D Schrédinger equations for all subbands become decoupled, significantly reducing
the total cost. Venugopal et al. analyzed the effectiveness of the mode space method by comparing it with the full real phys-
ical space discretization of the 2D Schrédinger equation for an ultra small DG-MOSFET [6]. It is concluded that the mode
space method costs much less due to the fact that only a few subbands with lower energies need to be considered. The mode
space method has also been used to compare the ballistic transport and the scattering transport of ultra thin body DG-MOS-
FETs [7].

In addition to the NEGF, a kinetic model can be derived using the Wigner distribution function [5,8] in the position-
momentum phase space. The Wigner equation was first introduced by Wigner in 1932 by adding a correction term to the
Boltzmann equation for a low temperature case [3]. Numerical methods for both NEGF and Wigner equations have attracted
much attention recently due to the need of simulating quantum transport with computers [9,10]. The NEGF describes trans-
port in a quantum open system using boundary self-energies to account for the effect of contacts to the device [20]. Within
the NEGF formalism, a detailed treatment of the various scattering process is possible [11]. On the other hand, the Wigner
formalism has found many advantages for theoretical analysis of quantum transport. The Wigner function is an electron qua-
si-distribution in the phase space, which can model ideal contacts by separating incoming and outgoing components of the
distribution at the boundaries. This phase space description is similar to classical distributions and allows us to incorporate a
Boltzmann type collision term to explicitly deal with the electron scattering from ionized impurities, acoustic phonons, and
surface roughness at the Si/SiO, interface [5,12]. The Wigner equation can be solved by a probability method (Monte Carlo)
[13,14] and deterministic methods (Finite Difference method, Spectral method, etc) [1,4,5,15,16]. Both steady-state and tran-
sient Wigner equations have been solved by the finite difference method to analyze the transport character of RTD [4]. The
mode space method with 1D Wigner equations along the channel direction has been applied to determine the current
through a nano-size SOl MOSFET and analyze the effect of the channel size to the current character. Scattering effects
due to impurity, acoustic phonon, and surface roughness at the boundary between the silicon layer and the oxide layer
are also considered in the Wigner-mode space combination [1,5].

In this paper, we will study both NEGF and Wigner function methods for quantum transport along the channel direc-
tion and investigate the different manners the device boundary conditions are treated and their effects on the transport cur-
rent calculations for a nano-scale DG-MOSFET. As the Wigner equation is a reformulation of the Schrédinger equation by a
Weyl transform and the Fourier transform, the NEGF and the Wigner equation descriptions are in principle equivalent. How-
ever, different treatments of boundaries and scatterings produce different levels of approximation accuracy and computa-
tional efficiency. In the case of NEGF, the contact boundaries are treated by self-energy terms which are basically
Dirichlet to Neumann mappings for the Green’s function on the boundaries [7,17,20]. The boundary conditions are so de-
signed to observe the casuality of the system through an outgoing radiation condition; as a result, electron waves leaving
the active device regions will not be reflected at the boundaries. On the other hand, inflow boundary conditions are posed
for the Wigner distribution such that free electrons entering the device region will not be reflected at the boundaries, and the
Wigner distribution effectively assumes Fermi-Dirac equilibrium distributions of the electrons in the contacts at the
appropriate Fermi levels. The difference of imposing non-reflecting properties in the NEGF and the Wigner distribution
methods will have effects on the transport current calculated by either method, as shown in our simulations of a nano-scale
DG-MOSFET.

The paper is organized as follows. In Section 2, we first introduce the mode space method for 2D Schrédinger equations
and the concept of subband, then the relevant formulas for density functions and Landauer formulation for the current using
transmission probability coefficients. Section 3 describes the method of the NEGF and its treatment of quantum boundary
using the self-energy to ensure the non-reflection at the device boundaries for electron waves leaving the quantum device
active region, and most importantly, the relation between the transmission probability coefficient and the NEGF, and the
subsequent current formula using the NEGF. In Section 4, the Wigner function method is introduced, and the inflow bound-
ary condition for the Wigner distribution, which ensures the non-reflection at the boundaries for free electron waves entering
the device active region, is elaborated. Section 5 contains the numerical simulations with both the NEGF and the Wigner
equations in the channel direction in the framework of the mode space method for a nano-scale DG-MOSFET. Finally, a con-
clusion and a discussion are given in Section 6.

2. Current formula for transport in a DG-MOSFET in mode space methods

A DG-MOSFET has a structure shown in Fig. 1 with a silicon layer sandwiched by two symmetric oxide layers. The source
and the drain are doped heavily, while the body (I) is made intrinsic to approximate the ballistic limit [7]. As the scale of the
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Fig. 1. A double gate MOSFET cross-section.

device is very large in the y direction, the static potential V is assumed invariant along the y direction and determined by a 2D
Poisson equation

—Vo (e(x,2)VV(X,2)) = e(—p(X,2) + N4(x,2)), (1)

where e is the electron charge, £(x, z) is the dielectric, p(x,z) is the electron density, and Ng4(x,z) is the doping density func-
tion, respectively. The boundary condition is

V(x,2) = Vg — (W] = WY), (x,2) € EF, GH,

%;Z) =0, (x,2) € AB, BG, HC, CD, DF, EA,
where # is the normal direction of the boundary, and W}" = 4.188 is the work function of the metal gate, and W¥ = 4.05 is
that of the silicon. The Poisson equation is solved in the square domain ‘ABCDA’ which includes the silicon layer and the
oxide layers. On EF and GH, Ohmic contacts are imposed with a gate voltage V,. Meanwhile, insulator contacts are assumed
on boundaries of the oxide layers and the floating boundary condition is imposed on the contacts to maintain macroscopic
space-charge neutrality at the source (drain) contact irrespective of the biasing condition. The electron density function
p(x,z) has different representations in classical or quantum descriptions of the charge carrier transport. For a large scale de-
vice, charge carriers can be considered as classical particles for which the Newton’s motion law can be used to describe the
dynamics of the distribution of charge carriers in the Boltzmann equation.

As the device shrinks, a quantum transport model needs to be considered [10]. For 2D devices, we consider the 2D Schro-

dinger equation

HY(x,z) = E¥(x,2), (2)
where H is the Hamiltonian operator given by
2 2 2 2
H:_h_a__h_a__t'_e‘/(x’z)_ (3)

Here h is the reduced Plank constant, and m,, m,, m, are the effective mass in the x, y, z directions, respectively. In fact, there
are three valleys in the band-structure of the silicon and each valley has a different effective mass. The effective mass can be
denoted by a vector m, = {0.19,0.98,0.19}my, m, = {0.19,0.19,0.98}my, m, = {0.98,0.19,0.19}mo, where mq is the mass
of free electron in vacuum. The total density and the total current are calculated by a summation over the three valleys which
loops all conduction band minima of a given material [21]. For simplicity, the following formula for the density or current is
given for one valley. For a non-equilibrium state over an infinite domain, a finite domain problem for the active device region
can be solved either by the Green'’s function method or by the QTBM(Quantum-Transport-Boundary-Method) [18,19]. Either
method has its limitations: the Green function method incurs a large computational cost while the QTBM can not handle the
whole contact effect.

2.1. A mode space method

As the solution of the full 2D Schrédinger equation is expensive in computing cost, reduction to simpler models is usually
preferred, and a popular approach is the mode space method. Though being approximation in nature, the mode space meth-
od has been shown to give solutions reasonably close to those by the original full 2D solutions for ultra thin body DG-MOS-
FETs [6]. Within the mode space framework, the following 2D wave function ¥ (x, z) is expanded with eigenfunctions @, (x,z)
for the confinement direction,

¥(x,2) =Y Ou(X.2)pn(x), (4)
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where @,,(x,z) is the eigenfunction in the z direction, satisfying the following 1D Schrédinger equation

_h POnx2)
2m, 022

+eV(x,2)On(X,z) = En(x)On(x,z) for a fixed x. (5)

If the electron penetration into the oxide is ignored, zero Dirichlet boundary conditions can be used,
@m(x7 0) = 07 @m(x'~ TSf) = 07
where Tj; is the thickness of the silicon layer. Plugging (4) into the 2D Schrédinger Eq. (2) and assuming further that the

eigenfunctions in the confinement direction z do not depend on %, i.e.,

00n(X,2)

oax 0,

at the mth subband E,, (x), we arrive at a transport equation along the channel direction,

)
2m,  Ox?

+ En(X)pn(X) = E¢p(X), X € (—00,+00). (6)
In the contacts, the electrons are assumed to be in an equilibrium state; thus both the potential V(x,z) and the subband en-
ergy function E,,(x) can be taken as constant there. As a result, E,;(x) can be assumed of the following form

vy, —oo<X<Xyp,
En(x) =< v(x), X; <x<Xy, (7)
V3, X5 <X < o0,

where [X;,X;] is identified as the device active region.
2.2. Density distribution and current formula
Due to the large scale in the y direction, the complete wave function ®(x,y, z) and the total energy E, are assumed to take
the following forms with plane waves in the y direction,
('S

(p(XJ-, Z) = IP(XS Z)eikyyv Eml = W
y

+E,.

According to the equilibrium Fermi-Dirac statistics, the density function is given by

n’k;
p(x>y>z) = Z ZFf (21’”;‘,’+ E(X - :u) (I’oc(xa%z)d%(x:%z), (8)
ko
where u is the Fermi level and F; is the Fermi function
1
Ff(E - :u) = Epu>
‘l + ekBT

with the Boltzmann constant kg and the temperature T.
Summing over the wave-number k, yields

2mykgT .
px2) =3 | [T Fan(i = E)Va(x.2) ¥, (x,2), 9)
where
00 tH
Fu(x) :/0 gt (10)

Within the mode space method, the wave function ¥,(x,z) is assumed of a separable form

lpac(xv Z) = Z @m(x7 Z)¢m(xaEa)~

As a result, the density function becomes

P(x,2) =D > pmlX, Ex)|On(x,2) %, (11)
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where pn(x,E,) is the density in the transport direction x for the mth mode,

2mykgT
nh’

Now, by replacing the discrete summation over o by a continuous integration and using the dispersion relation E, = E, (k)

/dl =5 /dk"dE (13)

the density in the mth mode can be converted into an integration with respect to E,,

Pm(X,Ey) = Fo12(1t = Ex) | (. Ex) . (12)

+00
=3 pux B~ [ pulx EdE, (14)
where
_ [myksT 2 dkx
pm(val) = 27'E3hZF 1/2(# E, )id’m(x E ) . (15)
Thus,
2) =" puX)|On(x,2). (16)

To compute the current transport through a device, we assume that free electrons at various energies are injected into the
contacts and, based on the Landauer theory [9], the transport current can be computed through the reflection and transmis-
sion properties of the electron through the device. Mathematically, we assume the following set-up similar to an experimen-
tal setting. A unit amplitude plane wave is injected from the left (source) contact, and some portion of the electrons reflects
from the device and some transmits through and exits the right (drain) contact without reflection [7].

Let k; = ,/W and k; = , /”’“hﬁ The wave functions in the left and the right contacts are of the form

Pm(x) = Tek* 4 rpehix - x <0,
P (X) = tmeiex, x=>1L

where r,; and t,; are the reflection and the transmission coefficients for the source injection, and L is the length of the device.
Here, we set X; = 0,and L = X, — X;. The wave functions injected from the right drain contact have a similar form to the right
of the device active region.

The probability flux in the mth mode is defined as

- (90002228 — g 3 2000,

(17)

J= 2im,

It is easy to calculate the current transmission coefficient of free electrons from the source contact to the drain contact. For
the mth mode, it is given by

T, 4(E) =20 — 1 12 = 1— |9, (0) - 1% (18)
nc
Therefore, the current due to the electrons with the energy E, injected into the mth mode from the source contact is [9]

27,2

h’k
erTS d(E Ff<_<+5 —u) v (Ey) =e Zmyth Fo1(u — E)) T Y(Ey) vx(Ey). (19)
T

According to the dispersion relation of the free electrons E, = ’;zf , Ux(Ey) = ',’ﬂL and the procedure in (13), the total inflow
current is

mykgT
2m3

Fo1pp(pt = E)T5, (E)dEs, (20)
while the outflow current [** due to the electrons injected from the drain contact is analogous with (20). Finally, the total
current for the mth mode is

Iy = I(in) _ I(out)

m m ?

(21)

and

“+00
In = / Inm(E,)dE,. (22)
JO
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[m(Ey) = i (Ey) — Jouv (Ey) € mkaT

=V 2w [Fo1/2(is — Ex) = F_1 (it — E2)| Ty (Ey). (23)

3. Computing transport current with the NEGF
3.1. Boundary conditions of the Green’s function

The NEGF method can be used to solve the infinite domain problem (6) by defining the Green'’s function G(x,x’) as the
solution to the following problem

(E —En(x) + —> Gx,x')=d(x—-X), x,X € (—o0,+0). (24)
Boundary conditions suitable for the FDM (Finite Difference Method) and the FEM (Finite Element Method) have been de-
rived with a unified treatment for the NEGF [20]. If the FDM is used to solve the NEGF equation, the left boundary condition
is

G, X) = e BIXIGX, X)X, € (—00,X1), X € X1, Xal, (25)

which can be used to compute the value of G(x,,x") for x, outside the FDM computational domain [X;,X>]. Meanwhile, the
right boundary condition is

G, X) = e X)G(Xy X), X, € (Xa,+00), X € X1, Xa]. (26)

The boundary conditions for the Green'’s function are designed to observe the casuality of a retarded Green’s function such
that the electron waves leaving the quantum device region into the contacts will not experience reflections at the device
boundaries. The derivation of (25) and (26) is based on the Sommerfeld outgoing radiation condition imposed on the Green’s
function G(x,x), i.e., (& £ iki2)G(x,x’) — 0, as x — Foo, which implies that the electron wave due to a local Dirac excitation

will propagate to the infinite without reflection. The details can be found in Egs. (35)-(37) in [20].
3.2. Current formula by the NEGF

In the framework of the NEGF, the density matrix of the electrons injected with the energy E, into the mth subband is
[2,6]

1 [mykgT
Pm(Ea) = W[F—m(ﬂs —E)As +F1/2(ig — Ex)Ad], (27)

where the diagonal element gives just the density p,,(x, E,) defined in (15), and A,, Aq are the spectral functions related to the
Green function

As =GIG", Ag=GI,G", (28)
with

G=[El-H-X—-24 ", (29)

Toa=i(Za - 25)-

Here, 25, 24 are defined as the self-energies and describe the effect of the source and drain contacts to the device. In fact, the
self-energy is related to the boundary condition of Green'’s function (25) and (26) [20]. I's and I'y are related to the velocities
at the injection and exit points.

We will use a second order central finite difference scheme to solve (24) on [X;,X3]. Let

a= XZ;,X‘ , X0 = X1, X; = X1 +1ia, xy = X». Then, the corresponding matrix EI — H is given by
Ag ty O
ty 47 ty
El—H= . ,
tx AN—] tx
0 ty Ay

in which ¢, = %, A; = E — 2ty — En(x;). And, the self-energy X, is expressed as [20]
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Zs(i,j) = —t,e™ 198,014,

Zq(ij) = _txeikzaéNj(SN.i7
and I's, Iy is

I's(i,j) = 2ty sin(k1a)d1 01,

I'4(i,]) = 2ty sin(kaa)dn o,

where 6;; = 1, if i =j and d;; = 0, if i # j. The total current reads

I= Zm: /0 ” In(E)dE, (30)

where the current I,,(E) in the mth subband is the same as Eq. (23).

To relate the NEGF to the transmission coefficients for the quantum device, we consider again the central second order
finite difference method to discretize Eq. (6) with boundary conditions consistent with Eq. (17) for a device region
[X1,X2] = [0,L], and arrive at the following matrix equation

(/)ITI(XO) thx Sin(kla)
(EI_H_ZS_Z-d) d’m(xl) _ 0 ‘ (31)
d)m(XN) 0

Using the definition of the Green’s function G in (29), Eq. (31) shows that
dm(x0) = 12ty sin(k;a)G(1,1) = G(1,1)y,,

where
y; = i2tcsin(kia) = il5(1,1).

Then, based on (18) we have the transmission coefficient Tfn"j,

T =1 = (o) — 11> = G(1, 1), + G (1, 1)95 — |G(1, D)*|,
=i(G(1,1) = G (1, 1))Is(1,1) = |G, DPIF5(1, 1) = [G(1,N)PTs(1, )T (N, N). (32)
In general, the transmission coefficient Tfn’d is related to the device Green’s function as [23]
T, ¢ = trace(I';GI'4G") = trace(I'yGI'\G"). (33)

By summing over all subbands and integrating over the energy E, the total electron density can be then calculated as
] +oo
px,2) =4 Z/O P (E)|On(x,2)[*dE, (34)
m

where b is the mesh step in the z direction.
The density p(x,z) and the potential V(x, z) are coupled by the static electric equation and the channel transport equation.
Finally, the mode space method with the NEGF transport equation gives the following algorithm.

Algorithm 1. A Mode Space Method with the NEGF for the channel transport
Given an error tolerance € > 0.

(1) Guess an initial potential function V(x,z);

(2) Solve the eigenvalue problem (5) at each slice x = x;. Calculate eigenvalues E,(x;) form the subband E,(x) in the x
direction. At least three subbands will be calculated;

(3) Solve the transport equation at each subband E,;, (x) with the NEGF method (24)—(26) by a second order central finite
difference method on [X;,X] to calculate the density matrix p,, (E) via Eq. (27). The diagonal element is the density
matrix for the injected electrons with energy E;

(4) Insert the density p,,(E) into Eq. (34) and integrate over energy E to obtain the electron density p(x,z);

(5) Solve the Poisson Eq. (1) with a Newton iteration method [20]. With the updated potential V(x, z), repeat Step 2 to Step
5 until the potential distribution V(x,z) is convergent within the given error tolerance ¢;

(6) Compute the current with the convergent potential according to (33), (23) and (30).

Remark 1. In our computations, it is effective to set zeros as the initial guess on potential for small gate bias, especially for
Vg = 0. To investigate the -V curve, we need to obtain a group of values of voltages and currents (V{g, P),j=01,2.. .. We set
Vfg =j x 0.1V in our computation. The initial guess value on potential for V/,, j > 0 is the convergent potential for V{g’]. This
strategy is found to be effective in our simulations.
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Remark 2. Because of the symmetry of the eigenvalue problem (5) and that only a few small eigenvalues are needed, bisec-
tion method is applied to obtain the eigenvalues in Step (2).

Remark 3. For integration with respect to energy E for the computation of the density and the current in Step (4) and Step

(6), an adaptive Romberg’s method is applied to ensure the density and the current convergent within a given error
tolerance.

4. Computing transport current with the Wigner equation
4.1. Wigner equations

The Wigner function is defined through a Fourier transform for the density matrix, which is, for the mth subband,

Z zmkaTF 1/2(1 = E2) (X, E) (% E2), (35)

where the diagonal element p,,(x,x) is the density function for the mth subband. With a Weyl transform

x_R+ x_R—

2’ 2’
the Wigner distribution function for the mth mode is defined by
+00 r .
f(R.q) = 1 P (R+3.R—2)e dr. (36)
Meanwhile, the Wigner function corresponding to a wave function ¢,,(x,E,) is
r oo
fm(R, q) = 1 o (R +5.E) (R E,Ea)e’fq'dr. (37)

The density p,,(x) is related to the Wigner function fI'(x, q) by

Pm(X) = zl—n [ %fw'”(xy q)dq. (38)

To derive the equation for the Wigner function f(x, q) and the appropriate boundary conditions for an open system, we ap-
ply the Weyl transform and Fourier transform with respect to r to both sides of Eq. (35) to get

2m, KT
fvT(Xq) = Z ;th F—I/Z(,u - Eoc) vT'a(X7q)' (39)

The equation satisfied by the Wigner function f*(x,q) can be derived from (6) with the Weyl and the Fourier transforms
[3-5,13]

hqc‘)m .
) +ap [ Valxa— U a)dg =0, (40)

where the Wigner potential

, tee | , r r
Valeg=q) = [ sin(g—q)n) [Entx+3) ~ Ente— )] dr. (41)
From Eq. (39), the Wigner function f™(x, q) will satisfy
hg 9 on m _
oo+ [ Va0 =0, (42)

4.2. Boundary conditions of the Wigner function

The Wigner Eq. (42) contains a first order derivative in x; therefore, only one boundary condition is required at the bound-
ary of a finite domain. Because the potential E;,(x) in the contacts of both sides is assumed to be uniform, the solutions in the
semi-infinite contacts are plane waves of the form ¢,,(x) as in Eq. (17) in the left semi-infinite domain, for instance. Accord-
ing to the definition (36) of the Wigner distribution, for illustrative argument, as a rough approximation deep inside the left
contact, we have

400

f(x,q) = / b (X +3) b (x = )€ Tdr = (ks — @) + nl5(ks + ) — 2rmisin(kix)(@), (ki >0, x<0).  (43)
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The inflow boundary condition proposed in [4] at the left boundary specifies f*(0, q) when q > 0, and at the right bound-
ary f"*(L,q) when q < 0. Eq. (43) shows that only the injection wave contributes to the left boundary condition and the
reflection wave has no effect on it (due to the fact that 6(k; +q) =0, §(q) =0, for k; > 0,q > 0). The right boundary condi-
tion assumes a unit wave injected from the right contact. Next, for open systems, free electrons are supposed to be injected
from infinity, so the energy E, of the free electrons injected from the left contact has the form,

h’i:

E, = 2my

+ ;.

Therefore, according to Eqs. (39) and (43), the left boundary condition for the Wigner function should be

[2m,KgT h%q?
fm( q) = yh2B F,]/Z (ﬂ% U]), q>0. (44)

On the other hand, for a unit amplitude wave injected from the right, we can obtain the right boundary condition similarly

2m,KyT h*q?
fvT(qu): v2B F]/Z(,U—zq—Zb), qg<o0. (45)
T my

If the Fermi energy levels of the two contacts are different, electrons injected from the left contact are in equilibrium with
the left contact and those from the right contact are in equilibrium with the right contact. Thus, the boundary conditions for
a non-equilibrium state is

2m kT g2
£200,0) = | T2 F 1o (1 - 5~ En(x) ), a0,
TEh mx

2m,ksT h*q?
fv,;/n(l‘*q) = %8 F1/2<,ud_%_5m(x2)>ﬁ CI<0~,

(46)

nh?

where u,, i, are the Fermi energy of the source contact and the drain contact, respectively.
4.3. Current formula with Wigner distributions

After calculating f"(x, q) by Eqgs. (42) and (46), the density p,,(x) can be obtained by Eq. (38). Then, summing over all sub-
bands, we obtain the total density

me )|Om(x,2)|". (47)

The total current density is

X) = 21_71 ;Im (x), (48)
where
In(x) = e/fx %fv’j’(x, q)dq. (49)

For static problems, the current should be independent of x. According to Eqs. (39) and (43), the current due to the source
injection is

2m,KsT hi
In(x,ki) =e myRelp 12(—E, )(1—\rm(Ea)|2)i. (50)
nh? my

Recalling that for the Schrédinger wave description of scattering (18), we have

y hk
T =1 |rm(Es)l’,  vu(Es) ="
my

So I, (x, ky) is exactly I,,(E,) in Eq. (23). Therefore, the density function and the current formula described by the Wigner func-
tion are equivalent to those in the NEGF.

4.4. Numerical scheme for the Wigner equation

The Wigner equation is solved in the (x, q) space. Let h, be the mesh size of the x space, and N + 1 be the number of mesh
points,



4470 H. Jiang, W. Cai/Journal of Computational Physics 229 (2010) 4461-4475

L L . .
hxzﬁ, xi:—§+lhx, i=0,1,2,...,N.
From Eq. (42), only the boundary condition in the x-space is required. A upwind difference method is used to approximate
first order derivative in x. We denote L, the integration length in g, and its value will be determined by the mass conservation
property requirement below. Ny is the number of mesh points for the variable q. In order to avoid g = 0 which would lead to

a zero element in the diagonal of the matrix, we set the mesh points as
L L .1 .
hy =2, qujq—<]+§>hq, j=01,2...... Ng—1.

Discretizing the Wigner function at (x;, q;) yields

hq w(Xi) — Jw(Xi- 1 No-1 , ,
#‘W+ﬁ Z Vi (x,«,qj - qj/>fw(xi,qj,) =0, ¢;>0,
' ' = (51)
hq wlXi — Jw(Xi 1 I, / /
#f(%xf(l)‘f‘ﬁ Z VW(Xi)qj - qj’)fw(xi-,q]") =0, q; < 0,
=0
fori=1,2,3,......,.N—-1,and j=0,1,2,...... ,Nq — 1. Here VW<1>1<1‘,CI,- - q}’., is calculated by a numerical integration of Eq.
(41). In fact, if the phase-breaking process is so effective inside the contacts to destroy completely the coherence, the cor-

relation between any point inside the active region and a point inside the contact regions can be set to zero. So the integra-
tion interval for r in Eq. (41) is limited to  — |x| [22],

Va(.q—q) = /fm sin((q — ¢)r) (En(x + %) ~En(x - g))dr. (52)

In order to maintain the carrier conservation for each subband (assuming no charge scattering between different subbands),
the following integration over the g-space should be zero, which amounts to saying that the net scattering of electrons be-
tween q and ¢’ should be zero for conservation,

/ . da / L Ve q = @)f(x.q)dg = 0. (53)

Here, we have zeroed-out the distribution function fJ'(x,q) = 0 if |q| > %‘7 and effectively, Eq. (42) is only needed for |q| < %"
[16]. Now, as V,,(x,q — q') is calculated by a numerical quadrature in the r variable (see (57) below), Eq. (53) implies that

La

/j sin((q — q')r)dg = 0. (54)

—

Therefore, we have

cos <<%—q’>r) — cos <(%—q’)r—Lqr> =0. (55)

Consequently, we conclude that L;r should be a multiple of 27. Let h, denote the mesh size for the variable r and ry = kh;.
Thus, L, and h, should satisfy the following relation in order to ensure Eq. (55)

Lhy =27, L, =", (56)
T

which defines the integration length of L;,. Numerical integration is now applied to (41). For convenience, we set h, = 2h,.
Then, we have

. .
Vit =) =Y sin (D) 6 Ent ) (57)

In order to improve the computation accuracy, h, can be reduced to h, = h, or h, = “7* If E (x +1%) is not at a mesh point, a
linear interpolation is used to obtain it. The current density is computed as,

X hx B hq hq] m hqj w
]<x+7> _Em:ﬁ Lg) Fxfw (X-‘rhx:qj)"'_;)ﬁxfm(&qj) ' (58)

This definition ensures that the current density calculated for the steady-state solution is independent of x [4].
Finally, the mode space method with the Wigner transport equation gives the following algorithm.

Algorithm 2. A Mode Space Method with the Wigner equation for the channel transport
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Given an error tolerance € > 0.

(1) Guess an initial potential function V(x,z);

(2) Solve the eigenvalue problem (5) at each slice x = x;. Calculate eigenvalues E,,(x;) form the subband E,(x) in the x
direction. Again, at least three subbands are calculated;

(3) Solve the transport equation at each subband E(x) with the Wigner equation method (42) to calculate the density
pm(x) via Eq. (38);

(4) Insert the density p,,(x) into Eq. (47) to obtain the electron density p(x,z);

(5) Solve the Poisson Eq. (1) with a Newton iteration method [20]. With updated potential V(x, z), repeat Step 2 to Step 5
until the potential distribution V(x,z) is convergent within the given error tolerance ¢;

(6) Solve the eigenvalue problem (5) and the Wigner Eq. (42) with the convergent potential V(x, z),