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In this paper, we conduct a study of quantum transport models for a two-dimensional
nano-size double gate (DG) MOSFET using two approaches: non-equilibrium Green’s func-
tion (NEGF) and Wigner distribution. Both methods are implemented in the framework of
the mode space methodology where the electron confinements below the gates are pre-
calculated to produce subbands along the vertical direction of the device while the trans-
port along the horizontal channel direction is described by either approach. Each approach
handles the open quantum system along the transport direction in a different manner. The
NEGF treats the open boundaries with boundary self-energy defined by a Dirichlet to Neu-
mann mapping, which ensures non-reflection at the device boundaries for electron waves
leaving the quantum device active region. On the other hand, the Wigner equation method
imposes an inflow boundary treatment for the Wigner distribution, which in contrast
ensures non-reflection at the boundaries for free electron waves entering the device active
region. In both cases the space-charge effect is accounted for by a self-consistent coupling
with a Poisson equation. Our goals are to study how the device boundaries are treated in
both transport models affects the current calculations, and to investigate the performance
of both approaches in modeling the DG-MOSFET. Numerical results show mostly consistent
quantum transport characteristics of the DG-MOSFET using both methods, though with
higher transport current for the Wigner equation method, and also provide the current–
voltage (I–V) curve dependence on various physical parameters such as the gate voltage
and the oxide thickness.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

With fast development of semiconductor technologies, MOSFET dimensions are scaled down continuously. Gate and
channel lengths are considered as the characteristic size of a MOSFET. The classical Boltzmann equation can accurately de-
scribe the drift-diffusion transport of charge carriers when the characteristic size is much larger than the mean free path of
the carriers. However, quantum transport models should be used to address quantum effects once the characteristic size be-
comes much smaller than the mean free path [1]. The quantum transport models from the Schrödinger wave function can be
implemented with either the formulation of the Non-equilibrium Green’s function (NEGF) [2] or that of the Wigner distri-
bution function in a phase space [3]. Many simulations have been done on quantum devices such as the RTD (Resonant Tun-
neling Diode), bulk MOSFET, SOI MOSFET, and double gate (DG)-MOSFET [1,4–7]. Especially, the DG-MOSFET with symmetric
oxide layers and gates is a promising new device for better and more effective control of short channel effects.
. All rights reserved.
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A comprehensive description of quantum transport in nano-size MOSFETs is offered by the solution of NEGF, coupled with
a Poisson equation self-consistently. However, the computational cost for solving the full NEGF is prohibitive; thus simplified
models are usually employed to reduce the computational cost [6]. For thin body DG-MOSFETs, for which the confinement
effect of the gates is strong, we could approximately decouple the solution of two- dimensional (2D) Schrödinger wave func-
tions into two 1D problems [6,7]. Such an approximation is the basis of the mode space method where the electron confine-
ments below the gates are pre-calculated to produce subbands along the vertical direction of the device while the channel
transport is described by 1D Schrödinger equations with a subband energy profile along the transport direction. In many
cases, one more approximation is done by assuming the eigenfunctions in the confinement direction do not change along
the transport direction. Thus, those 1D Schrödinger equations for all subbands become decoupled, significantly reducing
the total cost. Venugopal et al. analyzed the effectiveness of the mode space method by comparing it with the full real phys-
ical space discretization of the 2D Schrödinger equation for an ultra small DG-MOSFET [6]. It is concluded that the mode
space method costs much less due to the fact that only a few subbands with lower energies need to be considered. The mode
space method has also been used to compare the ballistic transport and the scattering transport of ultra thin body DG-MOS-
FETs [7].

In addition to the NEGF, a kinetic model can be derived using the Wigner distribution function [5,8] in the position-
momentum phase space. The Wigner equation was first introduced by Wigner in 1932 by adding a correction term to the
Boltzmann equation for a low temperature case [3]. Numerical methods for both NEGF and Wigner equations have attracted
much attention recently due to the need of simulating quantum transport with computers [9,10]. The NEGF describes trans-
port in a quantum open system using boundary self-energies to account for the effect of contacts to the device [20]. Within
the NEGF formalism, a detailed treatment of the various scattering process is possible [11]. On the other hand, the Wigner
formalism has found many advantages for theoretical analysis of quantum transport. The Wigner function is an electron qua-
si-distribution in the phase space, which can model ideal contacts by separating incoming and outgoing components of the
distribution at the boundaries. This phase space description is similar to classical distributions and allows us to incorporate a
Boltzmann type collision term to explicitly deal with the electron scattering from ionized impurities, acoustic phonons, and
surface roughness at the Si=SiO2 interface [5,12]. The Wigner equation can be solved by a probability method (Monte Carlo)
[13,14] and deterministic methods (Finite Difference method, Spectral method, etc) [1,4,5,15,16]. Both steady-state and tran-
sient Wigner equations have been solved by the finite difference method to analyze the transport character of RTD [4]. The
mode space method with 1D Wigner equations along the channel direction has been applied to determine the current
through a nano-size SOI MOSFET and analyze the effect of the channel size to the current character. Scattering effects
due to impurity, acoustic phonon, and surface roughness at the boundary between the silicon layer and the oxide layer
are also considered in the Wigner-mode space combination [1,5].

In this paper, we will study both NEGF and Wigner function methods for quantum transport along the channel direc-
tion and investigate the different manners the device boundary conditions are treated and their effects on the transport cur-
rent calculations for a nano-scale DG-MOSFET. As the Wigner equation is a reformulation of the Schrödinger equation by a
Weyl transform and the Fourier transform, the NEGF and the Wigner equation descriptions are in principle equivalent. How-
ever, different treatments of boundaries and scatterings produce different levels of approximation accuracy and computa-
tional efficiency. In the case of NEGF, the contact boundaries are treated by self-energy terms which are basically
Dirichlet to Neumann mappings for the Green’s function on the boundaries [7,17,20]. The boundary conditions are so de-
signed to observe the casuality of the system through an outgoing radiation condition; as a result, electron waves leaving
the active device regions will not be reflected at the boundaries. On the other hand, inflow boundary conditions are posed
for the Wigner distribution such that free electrons entering the device region will not be reflected at the boundaries, and the
Wigner distribution effectively assumes Fermi–Dirac equilibrium distributions of the electrons in the contacts at the
appropriate Fermi levels. The difference of imposing non-reflecting properties in the NEGF and the Wigner distribution
methods will have effects on the transport current calculated by either method, as shown in our simulations of a nano-scale
DG-MOSFET.

The paper is organized as follows. In Section 2, we first introduce the mode space method for 2D Schrödinger equations
and the concept of subband, then the relevant formulas for density functions and Landauer formulation for the current using
transmission probability coefficients. Section 3 describes the method of the NEGF and its treatment of quantum boundary
using the self-energy to ensure the non-reflection at the device boundaries for electron waves leaving the quantum device
active region, and most importantly, the relation between the transmission probability coefficient and the NEGF, and the
subsequent current formula using the NEGF. In Section 4, the Wigner function method is introduced, and the inflow bound-
ary condition for the Wigner distribution, which ensures the non-reflection at the boundaries for free electron waves entering
the device active region, is elaborated. Section 5 contains the numerical simulations with both the NEGF and the Wigner
equations in the channel direction in the framework of the mode space method for a nano-scale DG-MOSFET. Finally, a con-
clusion and a discussion are given in Section 6.
2. Current formula for transport in a DG-MOSFET in mode space methods

A DG-MOSFET has a structure shown in Fig. 1 with a silicon layer sandwiched by two symmetric oxide layers. The source
and the drain are doped heavily, while the body (I) is made intrinsic to approximate the ballistic limit [7]. As the scale of the
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Fig. 1. A double gate MOSFET cross-section.
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device is very large in the y direction, the static potential V is assumed invariant along the y direction and determined by a 2D
Poisson equation
�r � ðeðx; zÞrVðx; zÞÞ ¼ eð�qðx; zÞ þ Ndðx; zÞÞ; ð1Þ
where e is the electron charge, eðx; zÞ is the dielectric, qðx; zÞ is the electron density, and Ndðx; zÞ is the doping density func-
tion, respectively. The boundary condition is
Vðx; zÞ ¼ Vg � ðWm
f �Wsi

f Þ; ðx; zÞ 2 EF; GH;
@Vðx;zÞ
@g ¼ 0; ðx; zÞ 2 AB; BG; HC; CD; DF; EA;

(

where g is the normal direction of the boundary, and Wm
f ¼ 4:188 is the work function of the metal gate, and Wsi

f ¼ 4:05 is
that of the silicon. The Poisson equation is solved in the square domain ‘ABCDA’ which includes the silicon layer and the
oxide layers. On EF and GH, Ohmic contacts are imposed with a gate voltage Vg . Meanwhile, insulator contacts are assumed
on boundaries of the oxide layers and the floating boundary condition is imposed on the contacts to maintain macroscopic
space-charge neutrality at the source (drain) contact irrespective of the biasing condition. The electron density function
qðx; zÞ has different representations in classical or quantum descriptions of the charge carrier transport. For a large scale de-
vice, charge carriers can be considered as classical particles for which the Newton’s motion law can be used to describe the
dynamics of the distribution of charge carriers in the Boltzmann equation.

As the device shrinks, a quantum transport model needs to be considered [10]. For 2D devices, we consider the 2D Schrö-
dinger equation
HWðx; zÞ ¼ EWðx; zÞ; ð2Þ
where H is the Hamiltonian operator given by
H ¼ � �h2

2mx

@2

@x2 �
�h2

2mz

@2

@z2 þ eVðx; zÞ: ð3Þ
Here �h is the reduced Plank constant, and mx;my;mz are the effective mass in the x; y; z directions, respectively. In fact, there
are three valleys in the band-structure of the silicon and each valley has a different effective mass. The effective mass can be
denoted by a vector mx ¼ f0:19;0:98;0:19gm0; my ¼ f0:19;0:19;0:98gm0; mz ¼ f0:98;0:19;0:19gm0, where m0 is the mass
of free electron in vacuum. The total density and the total current are calculated by a summation over the three valleys which
loops all conduction band minima of a given material [21]. For simplicity, the following formula for the density or current is
given for one valley. For a non-equilibrium state over an infinite domain, a finite domain problem for the active device region
can be solved either by the Green’s function method or by the QTBM(Quantum-Transport-Boundary-Method) [18,19]. Either
method has its limitations: the Green function method incurs a large computational cost while the QTBM can not handle the
whole contact effect.

2.1. A mode space method

As the solution of the full 2D Schrödinger equation is expensive in computing cost, reduction to simpler models is usually
preferred, and a popular approach is the mode space method. Though being approximation in nature, the mode space meth-
od has been shown to give solutions reasonably close to those by the original full 2D solutions for ultra thin body DG-MOS-
FETs [6]. Within the mode space framework, the following 2D wave function Wðx; zÞ is expanded with eigenfunctions Hmðx; zÞ
for the confinement direction,
Wðx; zÞ ¼
X

m

Hmðx; zÞ/mðxÞ; ð4Þ
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where Hmðx; zÞ is the eigenfunction in the z direction, satisfying the following 1D Schrödinger equation
� �h2

2mz

@2Hmðx; zÞ
@z2 þ eVðx; zÞHmðx; zÞ ¼ EmðxÞHmðx; zÞ for a fixed x: ð5Þ
If the electron penetration into the oxide is ignored, zero Dirichlet boundary conditions can be used,
Hmðx;0Þ ¼ 0; Hmðx; TsiÞ ¼ 0;
where Tsi is the thickness of the silicon layer. Plugging (4) into the 2D Schrödinger Eq. (2) and assuming further that the
eigenfunctions in the confinement direction z do not depend on x, i.e.,
@Hmðx; zÞ
@x

¼ 0;
at the mth subband EmðxÞ, we arrive at a transport equation along the channel direction,
� �h2

2mx

@2/mðxÞ
@x2 þ EmðxÞ/mðxÞ ¼ E/mðxÞ; x 2 ð�1;þ1Þ: ð6Þ
In the contacts, the electrons are assumed to be in an equilibrium state; thus both the potential Vðx; zÞ and the subband en-
ergy function EmðxÞ can be taken as constant there. As a result, EmðxÞ can be assumed of the following form
EmðxÞ ¼
v1; �1 < x 6 X1;

vðxÞ; X1 < x < X2;

v2; X2 6 x < þ1;

8><
>: ð7Þ
where ½X1;X2� is identified as the device active region.

2.2. Density distribution and current formula

Due to the large scale in the y direction, the complete wave function Uðx; y; zÞ and the total energy Etol are assumed to take
the following forms with plane waves in the y direction,
Uðx; y; zÞ ¼ Wðx; zÞeikyy; Etol ¼
�h2k2

y

2my
þ Ea:
According to the equilibrium Fermi–Dirac statistics, the density function is given by
qðx; y; zÞ ¼
X

ky

X
a

Ff
�h2k2

y

2my
þ Ea � l

 !
Uaðx; y; zÞU�aðx; y; zÞ; ð8Þ
where l is the Fermi level and Ff is the Fermi function
Ff ðE� lÞ ¼ 1

1þ e
E�l
kBT

;

with the Boltzmann constant kB and the temperature T.
Summing over the wave-number ky yields
qðx; zÞ ¼
X

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mykBT

p�h2

s
F�1=2ðl� EaÞWaðx; zÞW�aðx; zÞ; ð9Þ
where
FlðxÞ ¼
Z 1

0

tl

1þ eðt�xÞ dt: ð10Þ
Within the mode space method, the wave function Waðx; zÞ is assumed of a separable form
Waðx; zÞ ¼
X

m

Hmðx; zÞ/mðx; EaÞ:
As a result, the density function becomes
qðx; zÞ ¼
X

m

X
a

~qmðx; EaÞjHmðx; zÞj2; ð11Þ
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where ~qmðx; EaÞ is the density in the transport direction x for the mth mode,
~qmðx; EaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mykBT

p�h2

s
F�1=2ðl� EaÞj/mðx; EaÞj2: ð12Þ
Now, by replacing the discrete summation over a by a continuous integration and using the dispersion relation Ea ¼ EaðkxÞ
X
a
� 1

2p

Z
dkx ¼

1
2p

Z
dkx

dEa
dEa; ð13Þ
the density in the mth mode can be converted into an integration with respect to Ea,
qmðxÞ ¼
X

a
qmðx; EaÞ �

Z þ1

0
qmðx; EaÞdEa; ð14Þ
where
qmðx; EaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mykBT

2p3�h2

s
F�1=2ðl� EaÞj/mðx; EaÞj2

dkx

dEa
: ð15Þ
Thus,
qðx; zÞ ¼
X

m

qmðxÞjHmðx; zÞj2: ð16Þ
To compute the current transport through a device, we assume that free electrons at various energies are injected into the
contacts and, based on the Landauer theory [9], the transport current can be computed through the reflection and transmis-
sion properties of the electron through the device. Mathematically, we assume the following set-up similar to an experimen-
tal setting. A unit amplitude plane wave is injected from the left (source) contact, and some portion of the electrons reflects
from the device and some transmits through and exits the right (drain) contact without reflection [7].

Let k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxðE�v1Þ

�h2

q
and k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxðE�v2Þ

�h2

q
. The wave functions in the left and the right contacts are of the form
/mðxÞ ¼ 1eik1x þ rme�ik1x; x 6 0;
/mðxÞ ¼ tmeik2x; x P L;

(
ð17Þ
where rm and tm are the reflection and the transmission coefficients for the source injection, and L is the length of the device.
Here, we set X1 ¼ 0, and L ¼ X2 � X1. The wave functions injected from the right drain contact have a similar form to the right
of the device active region.

The probability flux in the mth mode is defined as
j ¼ �h
2imx

/�mðxÞ
@/mðxÞ
@x

� /mðxÞ
@/�mðxÞ
@x

� �
:

It is easy to calculate the current transmission coefficient of free electrons from the source contact to the drain contact. For
the mth mode, it is given by
Ts�d
m ðEaÞ ¼

jtrans

jinc
¼ 1� jrmj2 ¼ 1� j/mð0Þ � 1j2: ð18Þ
Therefore, the current due to the electrons with the energy Ea injected into the mth mode from the source contact is [9]
IðinÞm ðEaÞ ¼ e
X

ky

Ts�d
m ðEaÞFf

�h2k2
y

2my
þ Ea � l

 !
vxðEaÞ ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mykBT

p�h2

s
F�1=2ðl� EaÞTs�dðEaÞvxðEaÞ: ð19Þ
According to the dispersion relation of the free electrons Ea ¼ �h2k2
x

2mx
; vxðEaÞ ¼ �hkx

mx
, and the procedure in (13), the total inflow

current is
IðinÞm ¼ e

�h2

Z þ1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mykBT

2p3

r
F�1=2ðl� EaÞTs�d

m ðEaÞdEa; ð20Þ
while the outflow current IðoutÞ
m due to the electrons injected from the drain contact is analogous with (20). Finally, the total

current for the mth mode is
Im ¼ IðinÞm � IðoutÞ
m ; ð21Þ
and
Im ¼
Z þ1

0
ImðEaÞdEa; ð22Þ
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where
ImðEaÞ ¼ IðinÞm ðEaÞ � IðoutÞ
m ðEaÞ ¼

e

�h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mykBT

2p3

r
F�1=2ðls � EaÞ � F�1=2ðld � EaÞ
� �

Ts�d
m ðEaÞ: ð23Þ
3. Computing transport current with the NEGF

3.1. Boundary conditions of the Green’s function

The NEGF method can be used to solve the infinite domain problem (6) by defining the Green’s function Gðx; x0Þ as the
solution to the following problem
E� EmðxÞ þ
�h2

2mx

@2

@x2

 !
Gðx; x0Þ ¼ dðx� x0Þ; x; x0 2 ð�1;þ1Þ: ð24Þ
Boundary conditions suitable for the FDM (Finite Difference Method) and the FEM (Finite Element Method) have been de-
rived with a unified treatment for the NEGF [20]. If the FDM is used to solve the NEGF equation, the left boundary condition
is
Gðx0e; x0Þ ¼ e�ik1ðx0e�X1ÞGðX1; x0Þ; x0e 2 ð�1;X1Þ; x0 2 ½X1;X2�; ð25Þ
which can be used to compute the value of Gðx0e; x0Þ for x0e outside the FDM computational domain ½X1;X2�. Meanwhile, the
right boundary condition is
Gðx0e; x0Þ ¼ eik2 x0e�X2ð ÞGðX2; x0Þ; x0e 2 ðX2;þ1Þ; x0 2 ½X1;X2�: ð26Þ
The boundary conditions for the Green’s function are designed to observe the casuality of a retarded Green’s function such
that the electron waves leaving the quantum device region into the contacts will not experience reflections at the device
boundaries. The derivation of (25) and (26) is based on the Sommerfeld outgoing radiation condition imposed on the Green’s
function Gðx; x0Þ, i.e., @

@x� ik1;2
� �

Gðx; x0Þ ! 0, as x! �1, which implies that the electron wave due to a local Dirac excitation
will propagate to the infinite without reflection. The details can be found in Eqs. (35)–(37) in [20].

3.2. Current formula by the NEGF

In the framework of the NEGF, the density matrix of the electrons injected with the energy Ea into the mth subband is
[2,6]
qmðEaÞ ¼
1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mykBT

2p3�h2

s
F�1=2ðls � EaÞAs þ F�1=2ðld � EaÞAd
� �

; ð27Þ
where the diagonal element gives just the density qmðx; EaÞ defined in (15), and As;Ad are the spectral functions related to the
Green function
As ¼ GCsG
þ; Ad ¼ GCdGþ; ð28Þ
with
G ¼ ½EI � H � Rs � Rd��1
; ð29Þ

Cs;d ¼ i Rs;d � Rþs;d
	 


:

Here, Rs;Rd are defined as the self-energies and describe the effect of the source and drain contacts to the device. In fact, the
self-energy is related to the boundary condition of Green’s function (25) and (26) [20]. Cs and Cd are related to the velocities
at the injection and exit points.

We will use a second order central finite difference scheme to solve (24) on ½X1;X2�. Let
a ¼ X2�X1

N ; x0 ¼ X1; xi ¼ X1 þ ia; xN ¼ X2. Then, the corresponding matrix EI � H is given by
EI � H ¼

D0 tx 0 . . . . . . . . . . . .

tx D1 tx . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . tx DN�1 tx

. . . . . . . . . . . . 0 tx DN

0
BBBBBB@

1
CCCCCCA
;

in which tx ¼ �h2

2mxa2 ; Di ¼ E� 2tx � EmðxiÞ. And, the self-energy Rs;d is expressed as [20]
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Rsði; jÞ ¼ �txeik1ad1;jd1;i;

Rdði; jÞ ¼ �txeik2adN;jdN;i;
and Cs;Cd is
Csði; jÞ ¼ 2tx sinðk1aÞd1;jd1;i;

Cdði; jÞ ¼ 2tx sinðk2aÞdN;jdN;i;
where di;j ¼ 1, if i ¼ j and di;j ¼ 0, if i – j. The total current reads
I ¼
X

m

Z þ1

0
ImðEÞdE; ð30Þ
where the current ImðEÞ in the mth subband is the same as Eq. (23).
To relate the NEGF to the transmission coefficients for the quantum device, we consider again the central second order

finite difference method to discretize Eq. (6) with boundary conditions consistent with Eq. (17) for a device region
½X1;X2� ¼ ½0; L�, and arrive at the following matrix equation
ðEI � H � Rs � RdÞ

/mðx0Þ
/mðx1Þ

. . .

/mðxNÞ

0
BBB@

1
CCCA ¼

i2tx sinðk1aÞ
0

. . .

0

0
BBB@

1
CCCA: ð31Þ
Using the definition of the Green’s function G in (29), Eq. (31) shows that
/mðx0Þ ¼ i2tx sinðk1aÞGð1;1Þ ¼ Gð1;1Þc1;
where
c1 ¼ i2tx sinðk1aÞ ¼ iCsð1;1Þ:

Then, based on (18) we have the transmission coefficient Ts�d

m ,
Ts�d
m ¼ 1� j/mðx0Þ � 1j2 ¼ Gð1;1Þc1 þ G�ð1;1Þc�1 � jGð1;1Þj

2jc1j
2

¼ iðGð1;1Þ � G�ð1;1ÞÞCsð1;1Þ � jGð1;1Þj2jjCsð1;1Þj2 ¼ jGð1;NÞj2Csð1;1ÞCdðN;NÞ: ð32Þ
In general, the transmission coefficient Ts�d
m is related to the device Green’s function as [23]
Ts�d
m ¼ trace CsGCdGþ

� �
¼ trace CdGCsG

þ� �
: ð33Þ
By summing over all subbands and integrating over the energy E, the total electron density can be then calculated as
qðx; zÞ ¼ 1
b

X
m

Z þ1

0
qmðEÞjHmðx; zÞj2dE; ð34Þ
where b is the mesh step in the z direction.
The density qðx; zÞ and the potential Vðx; zÞ are coupled by the static electric equation and the channel transport equation.

Finally, the mode space method with the NEGF transport equation gives the following algorithm.

Algorithm 1. A Mode Space Method with the NEGF for the channel transport
Given an error tolerance � > 0.

(1) Guess an initial potential function Vðx; zÞ;
(2) Solve the eigenvalue problem (5) at each slice x ¼ xi. Calculate eigenvalues EmðxiÞ form the subband EmðxÞ in the x

direction. At least three subbands will be calculated;
(3) Solve the transport equation at each subband EmðxÞ with the NEGF method (24)–(26) by a second order central finite

difference method on ½X1;X2� to calculate the density matrix qmðEÞ via Eq. (27). The diagonal element is the density
matrix for the injected electrons with energy E;

(4) Insert the density qmðEÞ into Eq. (34) and integrate over energy E to obtain the electron density qðx; zÞ;
(5) Solve the Poisson Eq. (1) with a Newton iteration method [20]. With the updated potential Vðx; zÞ, repeat Step 2 to Step

5 until the potential distribution Vðx; zÞ is convergent within the given error tolerance �;
(6) Compute the current with the convergent potential according to (33), (23) and (30).
Remark 1. In our computations, it is effective to set zeros as the initial guess on potential for small gate bias, especially for
Vg ¼ 0. To investigate the I–V curve, we need to obtain a group of values of voltages and currents ðVj

g ; I
jÞ; j ¼ 0;1;2 . . .. We set

Vj
g ¼ j	 0:1 V in our computation. The initial guess value on potential for Vj

g ; j > 0 is the convergent potential for Vj�1
g . This

strategy is found to be effective in our simulations.
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Remark 2. Because of the symmetry of the eigenvalue problem (5) and that only a few small eigenvalues are needed, bisec-
tion method is applied to obtain the eigenvalues in Step (2).

Remark 3. For integration with respect to energy E for the computation of the density and the current in Step (4) and Step
(6), an adaptive Romberg’s method is applied to ensure the density and the current convergent within a given error
tolerance.
4. Computing transport current with the Wigner equation

4.1. Wigner equations

The Wigner function is defined through a Fourier transform for the density matrix, which is, for the mth subband,
qmðx; x0Þ ¼
X

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mykBT

p�h2

s
F�1=2ðl� EaÞ/mðx; EaÞ/�mðx0; EaÞ; ð35Þ
where the diagonal element qmðx; xÞ is the density function for the mth subband. With a Weyl transform
x ¼ Rþ r
2
; x0 ¼ R� r

2
;

the Wigner distribution function for the mth mode is defined by
f m
w ðR; qÞ ¼

Z þ1

�1
qm Rþ r

2
;R� r

2

	 

e�iqrdr: ð36Þ
Meanwhile, the Wigner function corresponding to a wave function /mðx; EaÞ is
f m;a
w ðR; qÞ ¼

Z þ1

�1
/m Rþ r

2
; Ea

	 

/�m R� r

2
; Ea

	 

e�iqrdr: ð37Þ
The density qmðxÞ is related to the Wigner function f m
w ðx; qÞ by
qmðxÞ ¼
1

2p

Z þ1

�1
f m
w ðx; qÞdq: ð38Þ
To derive the equation for the Wigner function f m
w ðx; qÞ and the appropriate boundary conditions for an open system, we ap-

ply the Weyl transform and Fourier transform with respect to r to both sides of Eq. (35) to get
f m
w ðx; qÞ ¼

X
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2myKBT

p�h2

s
F�1=2ðl� EaÞf m;a

w ðx; qÞ: ð39Þ
The equation satisfied by the Wigner function f m;a
w ðx; qÞ can be derived from (6) with the Weyl and the Fourier transforms

[3–5,13]
�hq
mx

@

@x
f m;a
w ðx; qÞ þ 1

p�h

Z þ1

�1
Vwðx; q� q0Þf m;a

w ðx; q0Þdq0 ¼ 0; ð40Þ
where the Wigner potential
Vwðx; q� q0Þ ¼
Z þ1

0
sinððq� q0ÞrÞ Emðxþ

r
2
Þ � Emðx�

r
2
Þ

h i
dr: ð41Þ
From Eq. (39), the Wigner function f m
w ðx; qÞ will satisfy
�hq
mx

@

@x
f m
w ðx; qÞ þ

1
p�h

Z þ1

�1
Vwðx; q� q0Þf m

w ðx; q0Þdq0 ¼ 0: ð42Þ
4.2. Boundary conditions of the Wigner function

The Wigner Eq. (42) contains a first order derivative in x; therefore, only one boundary condition is required at the bound-
ary of a finite domain. Because the potential EmðxÞ in the contacts of both sides is assumed to be uniform, the solutions in the
semi-infinite contacts are plane waves of the form /mðxÞ as in Eq. (17) in the left semi-infinite domain, for instance. Accord-
ing to the definition (36) of the Wigner distribution, for illustrative argument, as a rough approximation deep inside the left
contact, we have
f m;a
w ðx; qÞ ¼

Z þ1

�1
/m xþ r

2

	 

/�m x� r

2

	 

e�iqrdr ¼ dðk1 � qÞ þ jrmj2dðk1 þ qÞ � 2rmi sinðk1xÞdðqÞ; ðk1 > 0; x < 0Þ: ð43Þ
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The inflow boundary condition proposed in [4] at the left boundary specifies f m;a
w ð0; qÞwhen q > 0, and at the right bound-

ary f m;a
w ðL; qÞ when q < 0. Eq. (43) shows that only the injection wave contributes to the left boundary condition and the

reflection wave has no effect on it (due to the fact that dðk1 þ qÞ ¼ 0; dðqÞ ¼ 0, for k1 > 0; q > 0). The right boundary condi-
tion assumes a unit wave injected from the right contact. Next, for open systems, free electrons are supposed to be injected
from infinity, so the energy Ea of the free electrons injected from the left contact has the form,
Ea ¼
�h2k2

1

2mx
þ v1:
Therefore, according to Eqs. (39) and (43), the left boundary condition for the Wigner function should be
f m
w ð0; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2myKBT

p�h2

s
F�1=2 l� �h2q2

2mx
� v1

 !
; q > 0: ð44Þ
On the other hand, for a unit amplitude wave injected from the right, we can obtain the right boundary condition similarly
f m
w ðL; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2myKBT

p�h2

s
F�1=2 l� �h2q2

2mx
� v2

 !
; q < 0: ð45Þ
If the Fermi energy levels of the two contacts are different, electrons injected from the left contact are in equilibrium with
the left contact and those from the right contact are in equilibrium with the right contact. Thus, the boundary conditions for
a non-equilibrium state is
f m
w ð0; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mykBT

p�h2

s
F�1=2 ls �

�h2q2

2mx
� Emðx1Þ

 !
; q > 0;

f m
w ðL; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mykBT

p�h2

s
F�1=2 ld �

�h2q2

2mx
� Emðx2Þ

 !
; q < 0;

ð46Þ
where ls;ld are the Fermi energy of the source contact and the drain contact, respectively.

4.3. Current formula with Wigner distributions

After calculating f m
w ðx; qÞ by Eqs. (42) and (46), the density qmðxÞ can be obtained by Eq. (38). Then, summing over all sub-

bands, we obtain the total density
qðx; zÞ ¼ 1
b

X
m

qmðxÞjHmðx; zÞj2: ð47Þ
The total current density is
jðxÞ ¼ 1
2p

X
m

ImðxÞ; ð48Þ
where
ImðxÞ ¼ e
Z þ1

�1

�hq
mx

f m
w ðx; qÞdq: ð49Þ
For static problems, the current should be independent of x. According to Eqs. (39) and (43), the current due to the source
injection is
Imðx; k1Þ ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2myKBT

p�h2

s
F�1=2ðl� EaÞð1� jrmðEaÞj2Þ

�hk1

mx
: ð50Þ
Recalling that for the Schrödinger wave description of scattering (18), we have
Ts�d
m ¼ 1� jrmðEaÞj2; vxðEaÞ ¼

�hk1

mx
:

So Imðx; k1Þ is exactly ImðEaÞ in Eq. (23). Therefore, the density function and the current formula described by the Wigner func-
tion are equivalent to those in the NEGF.

4.4. Numerical scheme for the Wigner equation

The Wigner equation is solved in the ðx; qÞ space. Let hx be the mesh size of the x space, and N + 1 be the number of mesh
points,
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hx ¼
L
N
; xi ¼ �

L
2
þ ihx; i ¼ 0;1;2; . . . ;N:
From Eq. (42), only the boundary condition in the x-space is required. A upwind difference method is used to approximate
first order derivative in x. We denote Lq the integration length in q, and its value will be determined by the mass conservation
property requirement below. Nq is the number of mesh points for the variable q. In order to avoid q ¼ 0 which would lead to
a zero element in the diagonal of the matrix, we set the mesh points as
hq ¼
Lq

Nq
; qj ¼

Lq

2
� jþ 1

2

� �
hq; j ¼ 0;1;2 . . . . . . Nq � 1:
Discretizing the Wigner function at ðxi; qjÞ yields
�hqj

mx

fwðxiÞ � fwðxi�1Þ
hx

þ 1
p�h

XNq�1

j0¼0

Vw xi; qj � q0j0
	 


fwðxi; q0j0 Þ ¼ 0; qj > 0;

�hqj

m
fwðxiþ1Þ � fwðxiÞ

hx
þ 1

p�h

XNq�1

j0¼0

Vw xi; qj � q0j0
	 


fwðxi; q0j0 Þ ¼ 0; qj < 0;

ð51Þ
for i ¼ 1;2;3; . . . . . . ;N � 1, and j ¼ 0;1;2; . . . . . . ;Nq � 1. Here Vw xi; qj � q0j0
	 


is calculated by a numerical integration of Eq.
(41). In fact, if the phase-breaking process is so effective inside the contacts to destroy completely the coherence, the cor-
relation between any point inside the active region and a point inside the contact regions can be set to zero. So the integra-
tion interval for r in Eq. (41) is limited to L

2� jxj [22],
Vwðx; q� q0Þ ¼
Z L

2�jxj

0
sinððq� q0ÞrÞ Em xþ r

2

	 

� Em x� r

2

	 
	 

dr: ð52Þ
In order to maintain the carrier conservation for each subband (assuming no charge scattering between different subbands),
the following integration over the q-space should be zero, which amounts to saying that the net scattering of electrons be-
tween q and q0 should be zero for conservation,
Z Lq
2

�Lq
2

dq
Z Lq

2

�Lq
2

Vwðx; q� q0Þf m
w ðx; q0Þdq0 ¼ 0: ð53Þ
Here, we have zeroed-out the distribution function f m
w ðx; qÞ ¼ 0 if jqj > Lq

2 , and effectively, Eq. (42) is only needed for jqj < Lq

2
[16]. Now, as Vwðx; q� q0Þ is calculated by a numerical quadrature in the r variable (see (57) below), Eq. (53) implies that
Z Lq
2

�Lq
2

sinððq� q0ÞrÞdq ¼ 0: ð54Þ
Therefore, we have
cos
Lq

2
� q0

� �
r

� �
� cos

Lq

2
� q0

� �
r � Lqr

� �
¼ 0: ð55Þ
Consequently, we conclude that Lqr should be a multiple of 2p. Let hr denote the mesh size for the variable r and rk ¼ khr .
Thus, Lq and hr should satisfy the following relation in order to ensure Eq. (55)
Lqhr ¼ 2p; Lq ¼
2p
hr
; ð56Þ
which defines the integration length of Lq. Numerical integration is now applied to (41). For convenience, we set hr ¼ 2hx.
Then, we have
Vw xi; qj � q0j0
	 


¼ hr

XNr

k¼0

sin
2kðj0 � jÞp

Nq

� �
ðEmðxiþkÞ � Emðxi�kÞÞ: ð57Þ
In order to improve the computation accuracy, hr can be reduced to hr ¼ hx or hr ¼ hx
2 . If Em xþ r

2

� �
is not at a mesh point, a

linear interpolation is used to obtain it. The current density is computed as,
j xþ hx

2

� �
¼
X

m

hq

2p
X
qj<0

�hqj

mx
f m
w ðxþ hx; qjÞ þ

X
qj>0

�hqj

mx
f w
m ðx; qjÞ

2
4

3
5: ð58Þ
This definition ensures that the current density calculated for the steady-state solution is independent of x [4].
Finally, the mode space method with the Wigner transport equation gives the following algorithm.

Algorithm 2. A Mode Space Method with the Wigner equation for the channel transport
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Given an error tolerance � > 0.

(1) Guess an initial potential function Vðx; zÞ;
(2) Solve the eigenvalue problem (5) at each slice x ¼ xi. Calculate eigenvalues EmðxiÞ form the subband EmðxÞ in the x

direction. Again, at least three subbands are calculated;
(3) Solve the transport equation at each subband EmðxÞ with the Wigner equation method (42) to calculate the density

qmðxÞ via Eq. (38);
(4) Insert the density qmðxÞ into Eq. (47) to obtain the electron density qðx; zÞ;
(5) Solve the Poisson Eq. (1) with a Newton iteration method [20]. With updated potential Vðx; zÞ, repeat Step 2 to Step 5

until the potential distribution Vðx; zÞ is convergent within the given error tolerance �;
(6) Solve the eigenvalue problem (5) and the Wigner Eq. (42) with the convergent potential Vðx; zÞ, and calculate the cur-

rent by (58).
5. Simulation results of a nano-scale DG-MOSFET

We simulate a symmetric DG-MOSFET with a 9 nm gate length, a 3 nm thickness of silicon and a 1 nm thickness of oxides.
The doping density in the source and drain contacts is 2	 1020 cm�3, damped exponentially into the channel with intrinsic
doping 1	 1010 cm�3. The mesh size is set to a ¼ hx ¼ 0:3 nm, and b ¼ 0:1 nm. In the Wigner function calculation, hr deter-
mines the integration region Lq given in Eq. (56). It is more accurate to use smaller hr , though at a larger cost. Fig. 2 shows
that the accuracy is improved when hr is refined, but the computation cost increases greatly. By balancing the accuracy and
computational cost, we set hr ¼ 2hx.

In both the NEGF and the Wigner equation methods, a numerical mesh is used to solve the differential equations. The
numerical results presented here have achieved mesh convergence for both methods. In the NEGF method, complex linear
systems have to be solved for each energy value E while we have to solve a differential–integral equation for the Wigner
distribution in the momentum and position space. For convenience, a uniform mesh is adopted in the computation of the
Wigner distribution and the wave-number mesh hq has to be small enough to ensure the accuracy. While in the NEGF, an
adaptive Romberg’s method is applied to integrate the energy E and to improve the computational efficiency. In fact, the
NEGF method is more efficient for ballistical transport simulations of 2D DG-MOSFET than the Wigner method. However,
the Wigner equation can easily include the scattering effect by adding the scattering term similar to that of the Boltzmann
equation.

Figs. 3 and 4 are the density distribution and the potential distribution with the NEGF method (denoted by NEGF) and the
Wigner function method (denoted by Wigner). Obviously, these two methods produce the same density and the potential
distributions under given gate and source–drain voltages. In Fig. 5, plot A is the first subband profile by the two methods,
and it is easy to see that the subbands of two methods almost overlap. Plot B is the Wigner function, which is sharp and
has negative values at the potential barrier, indicating the potential barrier scattering effect on the electrons.

From the density function, the potential distribution and the subband energy, we can not distinguish the difference be-
tween the NEGF method and the Wigner distribution method. As an I–V (voltage and current) curve can be measured exper-
imentally, so it is more significant to investigate the I–V curve of the two methods. Ids is the current and Vds is the voltage
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Fig. 2. Error of qðxÞ for different hr at Vg ¼ 0:0 V and Vds ¼ 0:0 V with the 1D Wigner transport equation.
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higher than those by the NEGF method. From Fig. 6, however, we can also see that the I–V curves with these two methods
approach each other as Vg increases.

Fig. 7 shows the I–V curves illustrating how the source–drain current Ids changes with the gate voltage Vg for Vds ¼ 0:05 V
(the left one) and Vds ¼ 0:4 V (the right one). At low source–drain voltages, the I–V curves of the two methods almost overlap.
With increasing source–drain voltages, the current calculated by the NEGF method is again lower than that by the Wigner
function method.

We also investigate the effect of the thickness of the silicon body and the oxide layers to the I–V curve in Fig. 8, which
shows the I–V curves getting higher when the silicon layer becomes thicker. If we double the silicon layer and the oxide layer
simultaneously, the I–V curves are lower than the original ones when Vds is less than 6 V and higher than original ones with
Vds greater than 6 V.

Although the current calculated by the Wigner equation is a little higher than that calculated by the NEGF method, the I–V
curves of the two methods have the same trend.
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6. Conclusion

In this paper, we have shown two different ways quantum device boundaries are treated in the NEGF and the Wigner
equation methods for the transport along the channel direction in a nano-scale DG-MOSFET. In the NEGF method, an outgo-
ing boundary condition is imposed to ensure the casualty of the retarded Green’s function such that electron waves leaving
the device active region into the contacts will not suffer reflections. On the other hand, the Wigner equation is equipped with
an inflow boundary condition such that free electrons from the contacts can enter the quantum device active region without
reflections at the boundaries. Both methods are integrated into the mode space framework. Due to the difference of the
boundary treatments, the transport current through the DG-MOSFET shows a higher through current for the Wigner equa-
tion than that computed by the NEGF. Also, we have found that the thickness of the silicon and the oxide affects much the I–V
characteristics of the device.

We conclude this paper by discussing the possible reasons why the two methods with their boundary treatments show
some differences in the I–V characteristics. In the treatment of the boundary condition for the NEGF, the boundary conditions
(25) and (26) rely on the ideal non-reflection of electrons emitting from the device into the equal potential contacts and the
assumption that the incident waves into the device are given in the Fermi–Dirac distributions. Both assumptions should be
further investigated, say, by including more contact regions into the simulated device region. On the other hand, the inflow
boundary condition for the Wigner equation is a local condition, and it has been pointed out in [24] that in fact the Wigner
potential depends globally on its previous time in the phase space through the integral operator. This fact is a current active
research topic. Moreover, the justification in (43) for giving the inflow boundary condition only applies far away from the
device and deep into the contact region. The plane wave assumption is only valid to one side of the device while the Wigner
distribution involves the correlation of the density operator over the whole one-dimensional space. As a result, pre-assigning
the Fermi–Dirac distribution to the Wigner distribution at the device boundaries, which may be related to the higher current,
requires further investigations to quantify its effect on the transport current. All these issues will be examined in future re-
search to understand the source for the effects of the boundary conditions on the transport current.
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